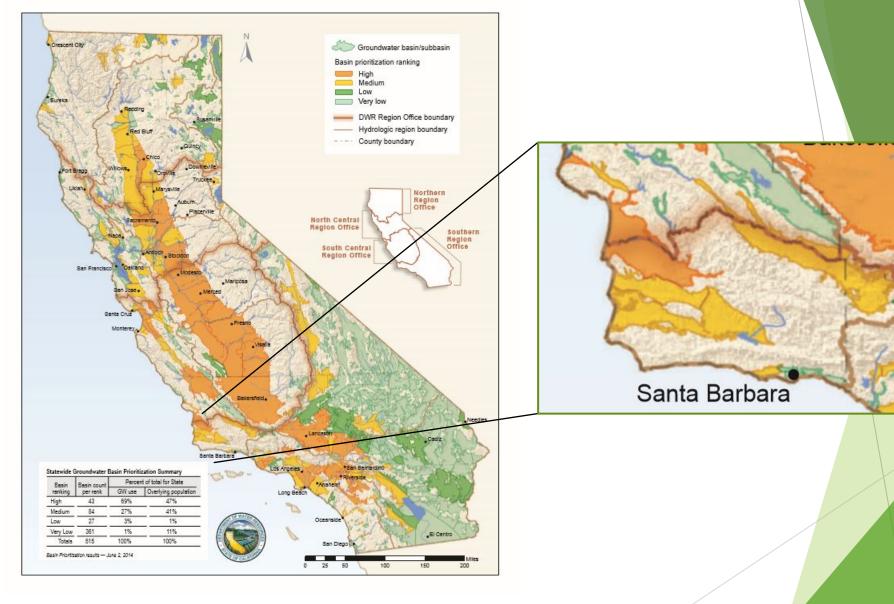
Sustainable Groundwater Management Act Compliance in the Santa Ynez River Valley Basin

Presented to: WE WATCH and Santa Ynez Valley Natural History Society

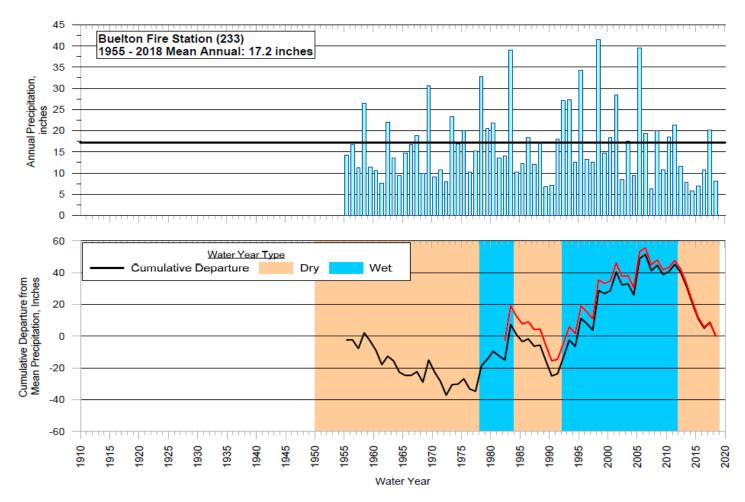
Presentation on Water

Bill Buelow, PG.


Santa Ynez River Water Conservation District

July 8, 2021

Santa Ynez River Water Conservation District


- ▶ Water management agency formed in 1939 under CA Water Code.
- ▶ District was formed to protect water rights of residents of the Santa Ynez and Lompoc Valleys.
 - ▶ Downstream water right holders rely on the permit conditions set on the Cachuma Project by the SWRCB Board Order 2019-0148.
 - ▶ District provides water downstream so residents can exercise their water-rights.
 - ► Coordinating Agency for three Groundwater Sustainability Agencies
 - ▶ Groundwater Reporting and Well Registration Programs.
- ▶ Bradbury Dam opened in 1953 and is operated by USBR principally for the benefit of South Coast water users.
- ▶ District often confused with water purveyor SYRWCD Improvement District Number One or "ID No. 1".

CASGEM Groundwater Basin Prioritization

Mandatory for groundwater basins in State designated as "high or medium" priority, including the Santa Ynez River Valley Groundwater Basin (DWR Bulletin 118).

Precipitation and Drought Trends

FIGURE 4

Annual Precipitation and Climatic Periods Buelton in the Eastern Management Area of the Santa Ynez Subbasin Hydrologic Base Period Selection

		Hydrologic Year Type Classification ¹			
	Lompoc City Hall		WMA Upper Santa Ynez Rive		
Water	Precipitation	% of	USGS Gage 11132500	SWRCB	Climatic
Year	(in/year)	Average 2	(Salsipuedes Creek)	WRO 2019-148	Trends 3
1982	11.9	81%	Dry	Below normal	Wet
1983	34.0	231%	Wet	Wet	Wet
1984	8.0	54%	Below normal	Above normal	Dry
1985	9.8	67%	Dry	Dry	Dry
1986	19.3	131%	Above normal	Above normal	Dry
1987	11.2	76%	Dry	Critically Dry	Dry
1988	15.4	105%	Dry	Dry	Dry
1989	6.6	45%	Critically Dry	Critically Dry	Dry
1990	6.6	45%	Critically Dry	Critically Dry	Dry
1991	15.0	102%	Below normal	Above normal	Dry
1992	15.8	107%	Above normal	Wet	Wet
1993	17.7	120%	Wet	Wet	Wet
1994	12.8	87%	Below normal	Below normal	Wet
1995	33.8	229%	Wet	Wet	Wet
1996	12.2	82%	Below normal	Below normal	Wet
1997	12.0	82%	Above normal	Above normal	Wet
1998	34.3	233%	Wet	Wet	Wet
1999	15.2	103%	Above normal	Below normal	Normal
2000	15.1	103%	Above normal	Above normal	Normal
2001	17.8	121%	Wet	Wet	Normal
2002	7.5	51%	Dry	Dry	Normal
2003	11.7	79%	Below normal	Below normal	Normal
2004	8.6	58%	Dry	Dry	Normal
2005	24.9	169%	Wet	Wet	Normal
2006	16.8	114%	Above normal	Above normal	Normal
2007	5.3	36%	Critically Dry	Critically Dry	Normal
2008	13.6	92%	Above normal	Above normal	Normal
2009	10.4	71%	Critically Dry	Dry	Normal
2010	19.5	132%	Below normal	Above normal	Normal
2011	26.8	182%	Wet	Wet	Normal
2012	10.6	72%	Dry	Dry	Dry
2013	7.2	49%	Critically Dry	Critically Dry	Dry
2014	7.2	49%	Critically Dry	Critically Dry	Dry
2015	8.0	55%	Critically Dry	Critically Dry	Dry
2016	11.7	79%	Critically Dry	Dry	Dry
2017	22.5	153%	Above normal	Above normal	Normal
2018	8.3	56%	Critically Dry	Dry	Normal

Water Year Types

Water	Year T	ype (1	942-2020
	Wet		No Data
	Above	e/Belov	v Normal
	Drv /	Critical	lv Drv

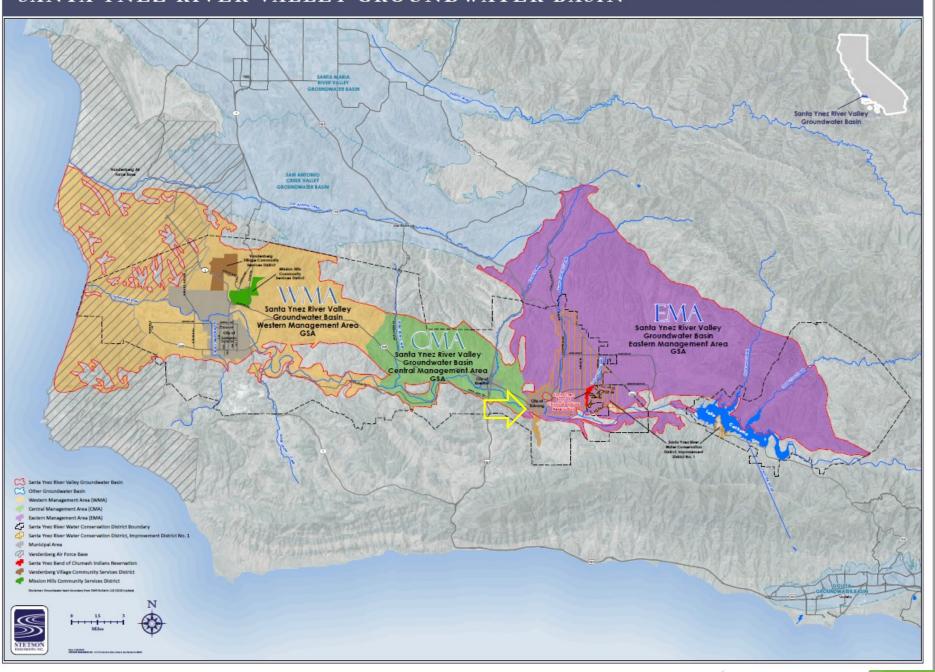
Santa Barbara County Integrated Regional Water Management Plan

Impact	Ranges*	
Temperature	Winter: Projected increases of 4°F to 5°F	
	Summer: Projected increases of 5°F to 6°F	
Precipitation	5- to 7-inch decrease in average annual rainfall	
	Increase in annual precipitation variability, fewer and more intense storms, and longer dry periods	
Sea-Level Rise	4–30 centimeters (cm) by 2030	
	12–61 cm by 2050	
	42–167 cm by 2100	
Supply	State Water Project delivery decrease of 7%–10% by 2050, and 21%–25% by 2100; changes to local supply not quantified	
Wildfire	Low to moderate increase in projected fire risk	
Flooding	Greater flood magnitudes**	

- ► Impacts of Climate Change on the Region by Mid-Century
- Source: Santa Barbara County IRWMP

SGMA Background

- 2015 SGMA law went into effect
- SYVGW Basin is "medium priority"
- Basin must be sustainable in 20 years
- SGMA gives local control of water management
- Each GSA will prepare a Groundwater Sustainability Plan (GSP) and submit to DWR by January 2022
- State Water Board is enforcement if locals do not comply
- New law was in response to periodic droughts in California


SGMA History Santa Ynez River Valley Groundwater Basin

- ▶ 2017 three Memorandum of Agreement (MOA)
 - Establishes three GSA Committees
 - ▶ WMA, CMA and EMA
- County Water Agency \$1M+ contribution for EMA
- DWR Grants

GSA Formation and History Continued

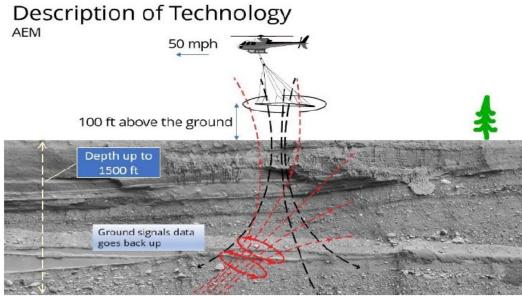
- ► Three Groundwater Sustainability Agencies in the Santa Ynez Basin
 - ► Eastern Management Area GSA Solvang, SYRWCD, ID No 1, County
 - Central Management Area GSA Buellton, SYRWCD, County
 - Western Management Area GSA Lompoc, Vandenberg Village, Mission Hills, SYRWCD, and County
- One representative (elected official) and one alternate per agency
- Late 2018 first GSA Committee meetings were held

SANTA YNEZ RIVER VALLEY GROUNDWATER BASIN SGMA GSA MANAGEMENT AREAS

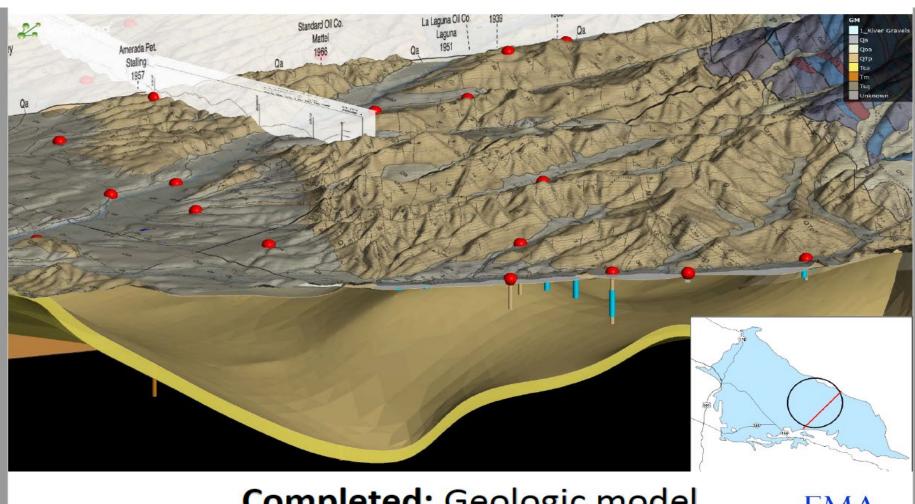
SGMA Meetings

- ► GSA Committee Quarterly Regular Meetings
- Special meetings as needed
- All meetings are held virtually, since March 2020, due to COVID restrictions
- Citizen Advisory Group Meetings (CAG)
 - ► Chosen by GSA Committee
 - Provide focused public comment on draft documents
 - ► Cross section of uses and users of groundwater

Sustainable Groundwater Management Act

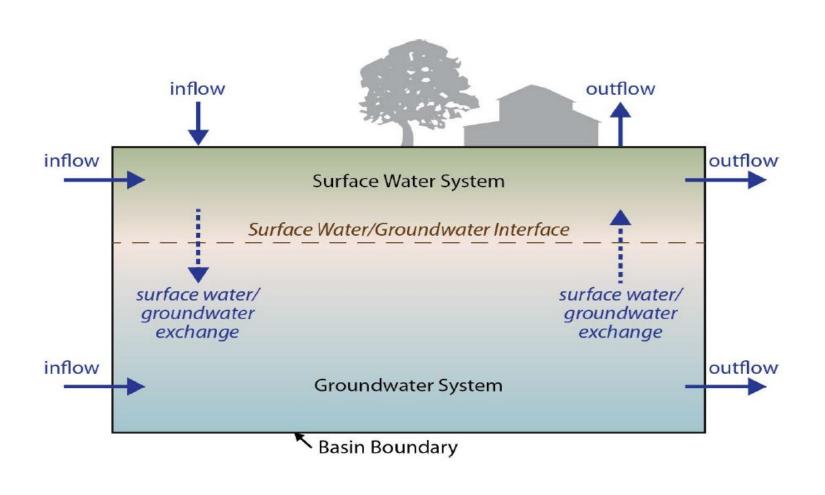

- GSPs will address six "undesirable results" from groundwater pumping
 - Chronic lowering of groundwater levels
 - Significant and unreasonable reduction of groundwater storage
 - Significant and unreasonable degraded water quality
 - Depletions of interconnected <u>surface water</u>
 - ► Significant and unreasonable <u>land subsidence</u>
 - Significant and unreasonable <u>seawater intrusion</u>

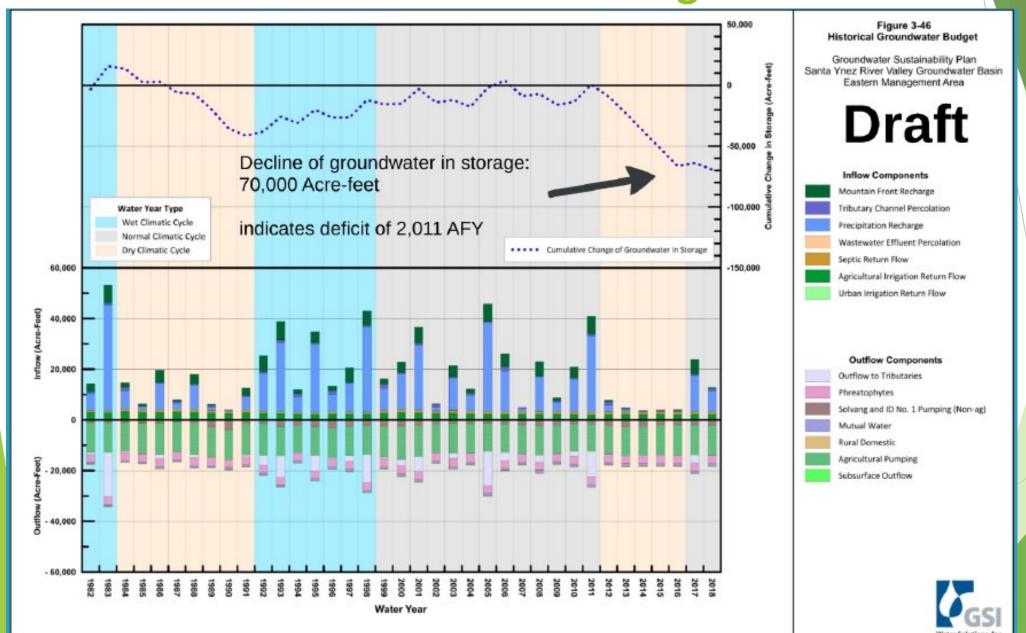
Groundwater Sustainability Plans


- Plans are due to DWR on or before January 31, 2022
- Plans must contain:
 - Basin Setting
 - Sustainable Management Criteria
 - Monitoring Networks
 - Projects and Management Actions
- Post GSP submittal activities TBD

Aerial Electromagnetic Survey

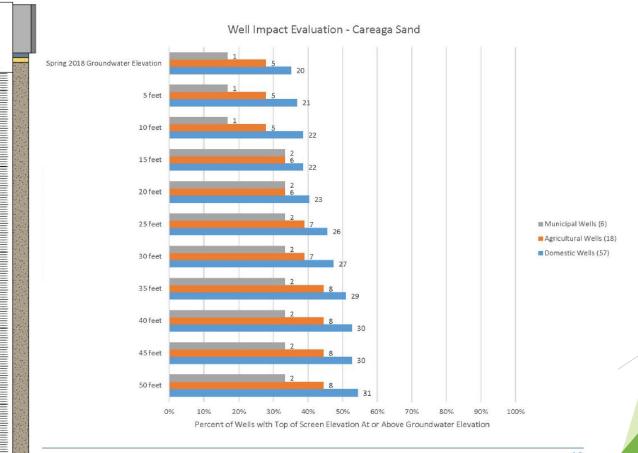
Geologic Model




Completed: Geologic model

Water Budget

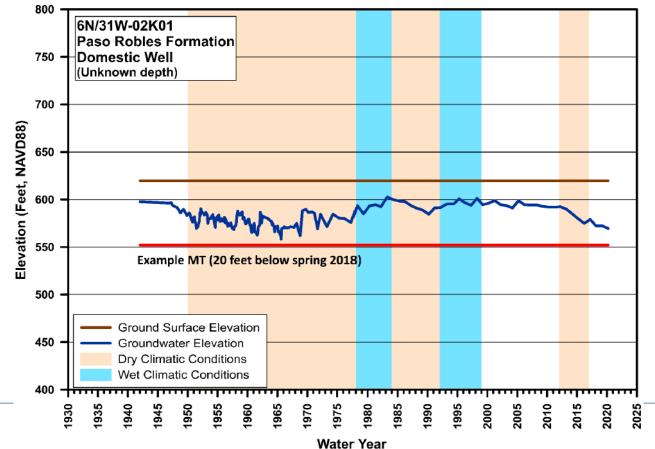
Historical Groundwater Budget


Sustainability Management Criteria

- Sustainability Goal for Basin
- Minimum Thresholds (MTs)
- Measurable Objectives (MOs)
- Interim Milestones (if applicable)
- Undesirable Results

Well Impact Evaluation Careaga Sand

Well Impact Evaluation


Careaga Sand Spring 2018

Setting Minimum Thresholds

GSI Water Solutions. Inc.

Representative Groundwater Hydrographs – Paso Robles Formation

Projects and Management Actions

Actions if Minimum Thresholds are Reached

<u>Chronic Lowering of Groundwater Levels and Chronic Reduction in Storage</u>
Sustainability Criteria

- Undesirable Result
 - Water levels fall below MTs after average and above average rainfall periods in 50% of representative wells over two consecutive years
 - o Significant number of wells unable to produce usual historical quantities of water
 - o Groundwater in storage continues to decrease over multiple years in the future
- Minimum Threshold
 - Paso Formation Wells: 15 feet below Spring 2018 water levels in representative wells
 - Careaga Sand Wells: 12 feet below Spring 2018 water levels in representative wells

Evaluation

- Evaluate cause and trends
- Consult with basin stakeholders on remedies
- If undesirable results are anticipated and are a result of pumping, then management actions taken

GSI Water Solutions, Inc.

Projects and Management Actions con't

Potential Management Actions

<u>Initial Management Actions During GSP Implementation</u>

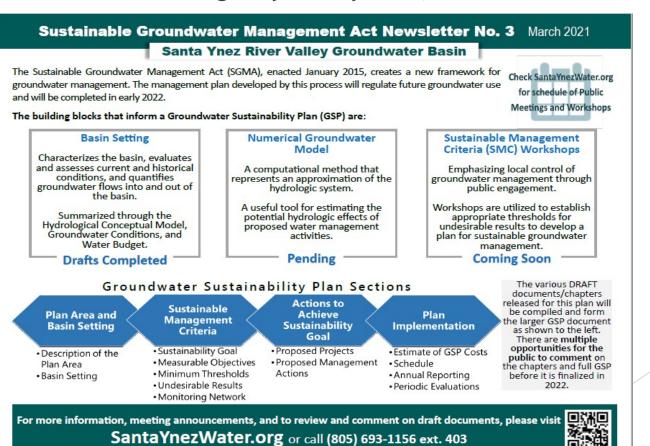
- 1. Address data gaps in priority areas
- 2. Metering program to improve estimates of actual water use
- 3. Promote water efficiency program
- 4. SGMA well registration program

More Intensive Management Actions if Needed

- 1. Demand management program
- 2. Groundwater credit program

13

Projects and Management Actions con't


- Potential Projects
 - Stormwater Capture and Recharge
 - Recycled water and indirect potable reuse
 - Precipitation enhancement
 - Conjunctive Use

Groundwater Sustainability Plans-Input

- Several opportunities to provide input
- After completion of each draft section
- ▶ Upon completion of Draft GSP and prior to adoption by the GSA
- After submittal of Final GSP to DWR

Public Meetings and Outreach

- Groundwater Communication Portal (GCP)
- Over 103 meetings basin-wide
- ► Citizen Advisory Group Meetings (CAG) one for each GSA, meet as needed
- ▶ Newsletters sent in Member Agency utility bills, and available on-line

Remaining Schedule for GSPs

- July 2021 Complete remaining sections
 - Monitoring Network
 - Projects and Management Actions
- GSA Meetings (July and August) watch for eblasts!
- Public Comment on Draft GSP August to October
- Final GSP and GSA Committee Adoption December
- GSP due date January 31, 2021
- Submittal starts DWR Public Comment Period
- Implementation of GSP starts upon submittal
- First annual report due 1 April 2022 (one for each GSP)

Sign up to receive email blasts on upcoming GSA or CAG meetings

www.santaynezwater.org

QUESTIONS?